

ACANTHOSPERMOLIDES AND OTHER CONSTITUENTS FROM *BLAINVILLEA ACMELLA*

P. SINGH, A. K. SHARMA, K. C. JOSHI, J. JAKUPOVIC* and F. BOHLMANN*

Department of Chemistry, University of Rajasthan, Jaipur 302004, India; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Received 3 December 1984)

Key Word Index—*Blainvillea acmella*; Compositae; sesquiterpene lactones; germacranolides; ovatifolin derivatives; melampolides; acanthospermolides.

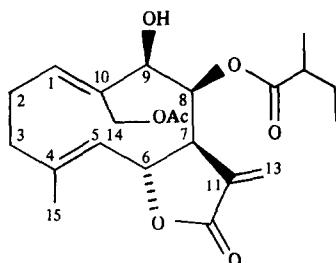
Abstract—The aerial parts of *Blainvillea acmella* afforded, in addition to widespread triterpenes, desacetyl ovatifolin, desacyl grazielic acid tiglate, 8β -[2-methylbutyryloxy]-9 β -hydroxy-14-oxo-acanthospermolide, four new germacranolides and seven acanthospermolides. The roots gave ovatifolin, two widespread thiophenacetylenes and two daucane derivatives. Comparison of the data with those of cyclochaenin required a revision of its structure. The structures were elucidated by high field ^1H NMR spectroscopy. Biogenetic relationships and taxonomic aspects are discussed briefly.

INTRODUCTION

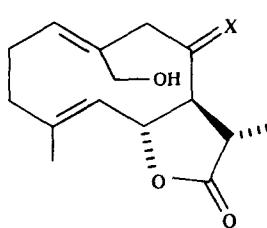
The genus *Blainvillea* (tribe Heliantheae) is placed in the subtribe Ecliptinae [1, 2]. So far the chemistry of only one species has been studied [3]. The isolation of acanthospermolides was of taxonomic interest as this type of sesquiterpene lactone had not been observed previously in any genus of the subtribe Ecliptinae. We have now investigated a further species, *Blainvillea acmella* L.

RESULTS AND DISCUSSION

The aerial parts gave some widely distributed compounds (see Experimental), desacetyl ovatifolin (19) [4], desacyl grazielic acid tiglate (20) [5], four new lactones related to ovatifolin (1-4), 8β -[2-methylbutyryloxy]-9 β -hydroxy-14-oxo-acanthospermolide (5), which was already known to be present in *B. dichotoma* [3], and seven additional acanthospermolides (6-12). The structure of 1 was deduced from its ^1H NMR spectrum (Table 1) which was close to that of ovatifolin (18) [6]. However, the presence of an additional oxygen function was obvious as the pair of double doublets (H-9) were replaced by a doublet at δ 4.40. Furthermore, the H-8 signal was shifted downfield if compared with the corresponding shift in the spectrum of ovatifolin. Typical signals of a 2-methylbutyrate indicated that this was the ester at C-8. The configurations at C-8 and C-9 followed from the small couplings which only agreed with a β -orientated oxygen function.


The molecular formula of 2 ($C_{15}H_{22}O_4$) together with its IR spectrum indicated the presence of a dihydroxy lactone. The ^1H NMR spectrum (Table 1) showed some similarities to that of desacetyl ovatifolin. However, the absence of the exomethylene double bond was obvious. The characteristic signals of these protons were replaced by a methyl doublet and a double quartet which could be assigned by spin decoupling to H-11. The coupling of the latter clearly showed an α -orientated C-11 methyl group. The ^1H NMR spectrum of 3 (Table 1) was close to that of

2. The presence of the corresponding tiglate followed from the typical ^1H NMR signals and the observed downfield shift of the H-8 signal. Thus 3 was the 8-O-tiglate of 2.

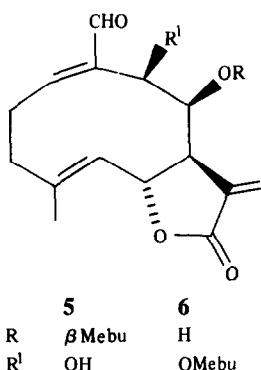
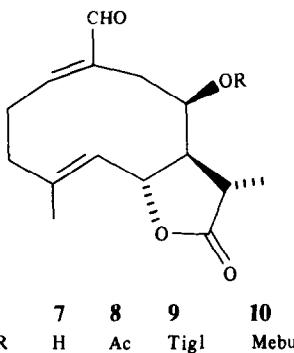

The ^1H NMR spectrum of 4 (Table 1) differed somewhat from that of 2 though many signals were similar. That it was a derivative of 2 followed from the results of spin decoupling. The absence of an H-8 signal together with a new pair of doublets below δ 3 clearly indicated a carbonyl group at C-8. All this agreed with the presence of desacetoxy-11 β ,13-dihydroovatifolin-8-one.

Though lactone 6 gave no molecular ion the molecular formula could be deduced from the presence of the $[M - RCO_2H]^+$ and the acyl (m/z 85) ions in the mass spectrum and the presence of a 2-methylbutyrate group according to the ^1H NMR spectrum. The other ^1H NMR spectral data (Table 2) strongly indicated that 6 was an isomer of 5 [3]. As could be deduced from the chemical shifts of H-8 and H-9, 5 and 6 differed only in the position of the ester residue. NOE difference spectroscopy indicated that the preferred conformation had both C-14 and C-15 above the plane. Clear NOEs were observed between H-15 and H-6 (15%), between H-7, H-8 (6%) and H-9 α (8%), between H-5 and H-7 (6%), between H-9, H-7 (15%) and H-2 (10%) as well as between H-14 and H-1 (15%).

The ^1H NMR spectra of 7-10 (Table 2) were in part very similar. Obviously 8-10 differed from each other only in the nature of the ester residue, which had to be placed at C-8 on the basis of spin decoupling. The typical ester signals showed that 8 was the acetate, 9 the tiglate and 10 the 2-methylbutyrate of 7. The signals of 7 were in part very close to those of 6. However, the absence of an oxygen function at C-9 led to the appearance of a pair of threefold doublets at δ 2.62 and 2.00. On the other basis of models it was obvious that the first signal was that of H-9 α , as in 6 a *W*-coupling was observed between that proton (H-9 α) and H-14. Of course the absence of an ester group in 7 caused a considerable upfield shift of the signal of H-8.

1

2

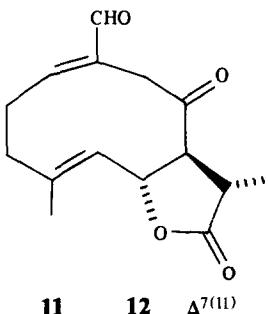


 β OH, H

3

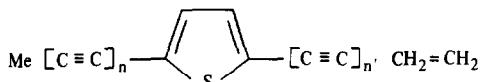
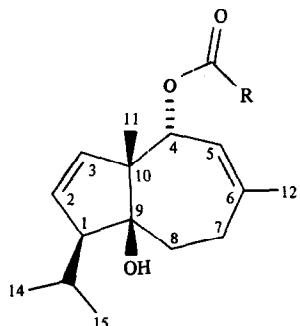
 β OTigl, H

4

O


5
R
R¹
 β Mebu6
H
OMebu

7



8

9

10

11

12
 $\Delta^7(11)$ 13
n = 1, n' = 214
n = 2, n' = 115
R=CH=CHPh (*trans*)16
R=CH=CHPh (*trans*) 2, 3H17
R=CH=CHC₆H₄OMe (*trans*, *p*) 2, 3H

The ¹H NMR spectrum of 11 (Table 2) showed similarities to that of 7. However, in addition to some shift differences the absence of an H-8 signal and the downfield shifts of the signals of H-7 and H-9 showed that the corresponding 8-keto derivative was present. The changed situation at this centre also led to a different conformation

as indicated by the absence of *W*-coupling between H-9 and H-14.

The ¹H NMR spectrum of 12, whose molecular formula had two hydrogens less than 11, showed the presence of an olefinic methyl (1.96 *d*) while no signals for H-7, H-8 and H-11 were observed. As, however, the

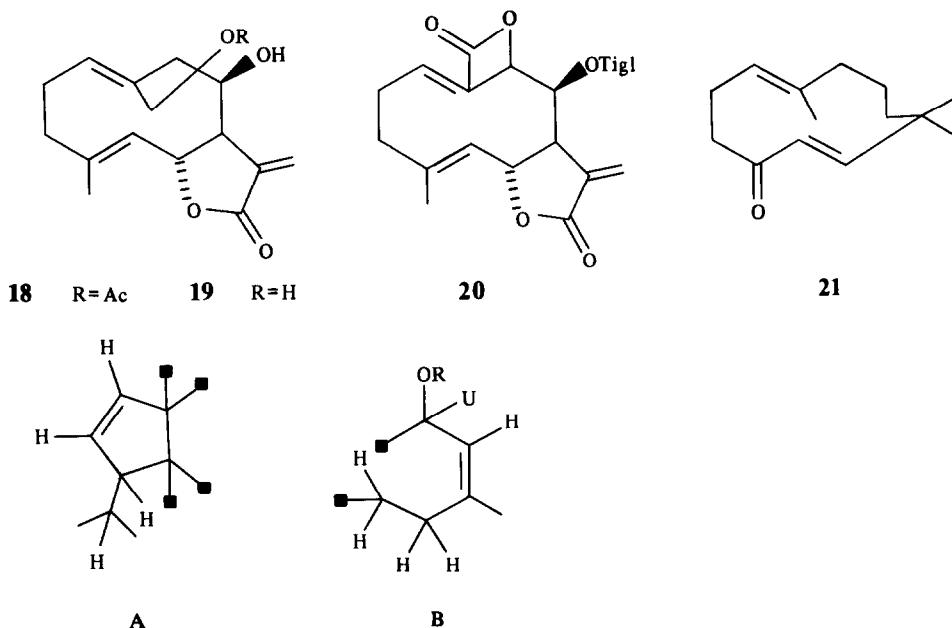


Table 1. ^1H NMR spectral data of **1–4** (400 MHz, CDCl_3 , TMS as internal standard)

H	1*	2	3†	4‡
1	5.30 <i>dd</i> (<i>br</i>)	5.05 <i>dd</i> (<i>br</i>)	5.06 <i>dd</i> (<i>br</i>)	5.32 <i>dd</i> (<i>br</i>)
5	4.78 <i>d</i> (<i>br</i>)	4.77 <i>d</i> (<i>br</i>)	4.75 <i>d</i> (<i>br</i>)	5.04 <i>d</i> (<i>br</i>)
6	4.95 <i>dd</i>	5.00 <i>t</i>	5.02 <i>t</i>	4.70 <i>t</i>
7	2.94 <i>ddd</i>	1.85 <i>dd</i> (<i>br</i>)	2.01 <i>dd</i> (<i>br</i>)	3.11 <i>m</i>
8	5.99 <i>d</i> (<i>br</i>)	4.09 <i>d</i> (<i>br</i>)	5.48 <i>dd</i> (<i>br</i>)	—
9	4.40 <i>d</i>	2.86 <i>dd</i> (<i>br</i>)	3.30 <i>dd</i> (<i>br</i>)	3.43 <i>d</i> (<i>br</i>)
9'		2.34 <i>dd</i>	2.37 <i>dd</i>	3.24 <i>d</i>
11	—	2.79 <i>dq</i>	2.40 <i>dq</i>	3.11 <i>m</i>
13	6.37 <i>d</i> 5.87 <i>d</i>	1.25 <i>d</i>	1.28 <i>d</i>	1.20 <i>d</i>
14		4.17 <i>d</i> (<i>br</i>)	4.20 <i>d</i> (<i>br</i>)	4.22 <i>d</i>
14'	4.45 <i>dd</i>	3.85 <i>d</i> (<i>br</i>)	3.80 <i>d</i> (<i>br</i>)	3.88 <i>d</i> (<i>br</i>)
15	1.80 <i>d</i>	1.64 <i>d</i>	1.65 <i>d</i>	1.50 <i>s</i> (<i>br</i>)

* OAc: 2.03 s; OMeBu: 2.37 *tq*, 1.67 *ddq*, 1.45 *ddq*, 0.88 *t*, 1.13 *d* [J (Hz): 2, 3 = 3, 4 = 2, 5 = 7; 3, 3' = 14].

τ OTigl: 6.88 *sg*, 1.88 *dg*, 1.85 *dg* [J (Hz): 3, 4 = 7; 3, 5 = 4, 5 = 1].

\ddagger C₆D₆: H-7, 2.46 *dd*, H-11, 2.95 *dq*.

J (Hz): Compound 1: 1, 2 = 12; 1, 2' = 4; 1, 14' = 1; 5, 6 = 10; 6, 7 = 9; 7, 8 ~ 0.5; 7, 13 = 3.5; 7, 13' = 3; 8, 9 = 1.5; 14, 14' = 12; **compounds 2-4:** 1, 2 = 1, 2' = 4; 5, 6 = 6; 6, 7 = 10; 7, 11 = 12; 8, 9 = 5; 8, 9' = 1.5; 9, 9' = 14; 11, 13 = 7; 14, 14' = 12 (**compound 4:** 1, 2 = 12; 1, 2' = 3; 9, 9' = 10.5)

remaining signals were close to those of 11, the presence of the 7,11-dehydro derivative of the latter could be deduced. As in similar cases, it could not be excluded that 12 might have been formed by isomerization of the 11,13-dehydro derivative of 11, whose presence, however, was not detected.

The extract of the roots gave stigmasterol, sitosterol, the germacraneolide ovatifolin [6], the thiopheneacetylenes 13 and 14 [7], rudbeckianone (21) [8], 1-hydroxy- α -

curcumene and two carotol derivatives, the cinnamates 15 and 16. The presence of cinnamate esters was deduced easily from the ^1H NMR spectra of 15 and 16 (see Table 3) which were in part very much broadened. The molecular formulae agreed with those of hydroxylated sesquiterpene cinnamates differing in the number of hydrogens. As followed from the ^1H NMR data at elevated temperature, 15 had two double bonds, one, according to the observed vicinal couplings, in a five

Table 2. ^1H NMR spectral data of 6–12 (400 MHz, CDCl_3 , TMS as internal standard)

H	6*	7	8†	9‡	10§	11	12
1	6.87 <i>dd</i>	6.55 <i>ddd</i>	6.59 <i>ddd</i>	6.59 <i>ddd</i>	6.59 <i>ddd</i>	6.80 <i>ddd</i>	6.66 <i>ddd</i>
2 α	2.80 <i>m</i>	2.30 <i>dddd</i>	2.28 <i>dddd</i>	2.30 <i>dddd</i>	2.30 <i>dddd</i>	2.35 <i>dddd</i>	2.33 <i>ddd</i>
2 β		2.47 <i>dddd</i>	2.50 <i>dddd</i>	2.50 <i>dddd</i>	2.50 <i>dddd</i>	2.61 <i>dddd</i>	2.60 <i>dddd</i>
3 α	2.36 <i>m</i>	2.06 <i>dd(br)</i>	2.06 <i>dd</i>	2.08 <i>dd</i>	2.08 <i>dd</i>	2.17 <i>dd</i>	2.12 <i>dd</i>
3 β		2.35 <i>ddd</i>	2.37 <i>ddd</i>	2.38 <i>ddd</i>	2.37 <i>ddd</i>	2.42 <i>ddd</i>	2.43 <i>ddd</i>
5	5.44 <i>d(br)</i>	4.90 <i>d(br)</i>	4.90 <i>d(br)</i>	4.90 <i>d(br)</i>	4.91 <i>d(br)</i>	5.14 <i>d(br)</i>	4.68 <i>d(br)</i>
6	5.10 <i>t</i>	5.05 <i>t</i>	4.98 <i>t</i>	5.02 <i>t</i>	4.99 <i>t</i>	4.59 <i>t</i>	5.56 <i>dq</i>
7	2.97 <i>d(br)</i>	1.37 <i>ddd</i>	1.50 <i>ddd</i>	1.52 <i>ddd</i>	1.52 <i>ddd</i>	2.61 <i>dd</i>	—
8	4.56 <i>s(br)</i>	4.87 <i>ddd</i>	6.02 <i>ddd</i>	6.07 <i>ddd</i>	6.00 <i>ddd</i>	—	—
9 α	5.61 <i>s(br)</i>	2.62 <i>ddd</i>	2.75 <i>ddd</i>	2.78 <i>ddd</i>	2.77 <i>ddd</i>	3.20 <i>d(br)</i>	3.34 <i>d(br)</i>
9 β		2.00 <i>ddd</i>	1.91 <i>ddd</i>	1.95 <i>ddd</i>	1.92 <i>ddd</i>	2.77 <i>d</i>	2.97 <i>d</i>
11	—	2.72 <i>dq</i>	2.32 <i>dq</i>	2.33 <i>dq</i>	2.30 <i>dq</i>	3.10 <i>dq</i>	—
13	6.29 <i>d</i> 5.56 <i>d</i>	1.12 <i>d</i>	1.18 <i>d</i>	1.20 <i>d</i>	1.20 <i>d</i>	1.14 <i>d</i>	1.96 <i>d</i>
14	9.43 <i>d</i>	9.40 <i>d</i>	9.43 <i>d</i>	9.44 <i>d</i>	9.44 <i>d</i>	9.55 <i>s</i>	9.40 <i>s</i>
15	1.59 <i>s(br)</i>	1.89 <i>s(br)</i>	1.89 <i>d</i>	1.91 <i>d</i>	1.91 <i>d</i>	1.80 <i>d</i>	1.89 <i>d</i>

*OMebu: 2.35 *tq*, 0.80 *t*, 1.08 *d*.†OAc: 2.11 *s*.‡OTigl: 6.88 *qq*, 1.86 *dq*, 1.83 *dq* [J (Hz): see Table 1].§OMebu: 2.43 *tq*, 1.68 *ddq*, 1.50 *ddq*, 0.91 *t*, 1.17 *d* [J (Hz): see Table 1].

J (Hz): Compound 6: 1, 2 β = 6; 1, 2 α = 11; 5, 6 = 6, 7 = 10; 7, 8 ~ 1; 7, 13 = 3.5; 7, 13' = 3; 8, 9 α ~ 1.5; 9 α , 14 = 1.5; compounds 7–10: 1, 2 β = 7.5; 1, 2 α = 9; 1, 9 α = 1.5; 2 α , 2 β = 13; 2 β , 3 β = 6.5; 2 β , 3 α ~ 2; 2 α , 3 β = 2; 2 α , 3 α = 11; 3 α , 3 β = 12; 5, 6 = 6, 7 = 10; 5, 15 = 1; 7, 8 = 1.5; 7, 11 = 12.5; 8, 9 α = 7.5; 8, 9 β = 10; 9, 9 β = 14; 9 α , 14 = 1.5; 11, 13 = 7; compounds 11 and 12: 1, 2 β = 7; 1, 2 α = 10; 1, 9 α = 1.5; 2 α , 2 β = 13; 2 β , 3 β ~ 7; 2 β , 3 α = 2 α , 3 β = 11; 3 β , 3 α = 12; 5, 6 = 6, 7 = 10; (compound 11: 7, 11 = 12; 9 α , 9 β = 18; compound 12: 9 α , 9 β = 17).

Table 3. ^1H NMR spectral data of 15–17 (400 MHz, CDCl_3 , TMS as internal standard)

H	15	60°	16	17
1	2.50 <i>m</i>	2.50 <i>dd</i>	2.05 <i>m</i>	2.05 <i>m</i>
2	5.71 <i>d(br)</i>	5.71 <i>dd</i>	1.68 <i>m</i>	1.60–1.80 <i>m</i>
3	5.37 <i>m</i>	5.37 <i>dd</i>		
4	5.33 <i>m</i>	5.33 <i>d</i>	5.21 <i>d</i>	5.31 <i>d</i>
5	5.48 <i>m</i>	5.48 <i>dq</i>	5.46 <i>d(br)</i>	5.52 <i>d(br)</i>
7	2.55 <i>m</i>	2.55 <i>dd(br)</i>	2.40 <i>m</i>	2.42 <i>m</i>
7'	2.38 <i>m</i>	2.42 <i>dd(br)</i>	2.25 <i>m</i>	2.32 <i>m</i>
8	2.18 <i>m</i>	2.18 <i>m</i>	2.05 <i>m</i>	2.05 <i>m</i>
8'	2.05 <i>m</i>	2.04 <i>m</i>		
11	1.12 <i>s</i>	1.12 <i>s</i>	1.05 <i>s</i>	1.08 <i>s</i>
12	1.75 <i>s(br)</i>	1.75 <i>s(br)</i>	1.70 <i>s(br)</i>	1.70 <i>s(br)</i>
13	1.84 <i>dqq</i>	1.85 <i>dqq</i>	1.85 <i>dqq</i>	1.87 <i>dqq</i>
14	1.09 <i>d</i>	1.09 <i>d</i>	1.06 <i>d</i>	1.06 <i>d</i>
OCOR	7.62 <i>d</i> 6.33 <i>d</i> 7.50 <i>m</i> 7.38 <i>m</i>	7.62 <i>d</i> 6.35 <i>d</i> 7.50 <i>m</i> 7.38 <i>m</i>	7.67 <i>d</i> 6.43 <i>d</i> 7.53 <i>m</i> 7.40 <i>m</i>	8.01 <i>d</i> 6.94 <i>d</i>
OMe	—	—	—	3.88 <i>s</i>

J (Hz): 4, 5 = 7; 5, 12 = 1; 7, 7' = 13; 7, 8' ~ 7; 7', 8 ~ 10; 1, 13 = 13, 14 = 13, 15 = 7; compound 15: 1, 2 = 3; 1, 3 = 2; 2, 3 = 6; OCinn: 7', 8' = 16; $\text{COC}_6\text{H}_4\text{OMe}$: 2', 3' = 8.

membered ring and the other a trisubstituted double bond bearing a methyl group. The signal of the olefinic proton was allylically coupled to the methyl group and vicinally coupled to a proton under the oxygen function which itself showed no further coupling. All signals could be assigned by spin decoupling which led to two sequences (A and B) which could be combined best to give 15. The stereochemistry was deduced by NOE difference spectroscopy, which also established the proposed mode of connection of A and B. Thus the hydroxy proton showed NOEs with H-11 (3%) and H-13 (10%), H-2 with H-1 (10%) and H-14 (5%), H-4 with H-11 (3%) and H-11 with H-3 (10%), H-4 (12%), H-5 (8%) and H-7 (7%).

The ¹H NMR spectrum of 16 was in part very similar to that of carotol [9] and 15, but showed only one olefinic signal. All data agreed with the presence of the 8,9-dihydro derivative of 15. Cyclachaenin, which has been isolated previously from *Iva xanthifolia* [10], is the corresponding *p*-methoxybenzoate and therefore its structure has to be revised to 17. The ¹H NMR data are given in Table 3.

The isolation of several acanthospermolides from *B. acmella* again indicates that these compounds may be characteristic for the genus. So far such sesquiterpene lactones with an aldehyde group at C-10 and a 8 β -oxygen function have been reported from *Acanthospermum* [11, 12], *Smallanthus* [13], *Siegesbeckia* [14] and *Ichthyothere* [15], while from *Melampodium* [16], *Tetragonotheca* [17] and *Enhydra* [18] similar lactones with an ester group at C-10 have been isolated. Acanthospermolides with an aldehyde group at C-10 are reported from two genera belonging to the tribe Mutisieae [19, 20], however, these have a 8 α -oxygen function, a difference which may be significant also in other types of sesquiterpene lactones. Most likely therefore the acanthospermolides of Mutisieae are not closely related to those of the Heliantheae. The co-occurrence of acanthospermolides and ovatifolin derivatives in *Blainvillea* is an indication that enzymatic oxidation of the hydroxy group at C-14 may be accompanied by isomerization of the 1(10)-double bond. If this is true *Blainvillea* may be related to *Podanthus*, which is also placed in the subtribe Ecliptinae and where lactones like 1 are present.

EXPERIMENTAL

The air dried plant material, collected in September 1984 in Ramgarh, Rajasthan, India (voucher No. RUBL 18371, Jaipur) was extracted with Et₂O-petrol (1:2) at room temp. CC (silica gel) fractions of the extract of the aerial parts (250 g) were as follows: 1 (Et₂O-petrol, 1:4), 2 (Et₂O) and 3 (Et₂O-MeOH, 9:1). TLC of fraction 1 (silica gel, PF 254, Et₂O-petrol, 1:4) gave 5 mg lupenone, 35 mg lupeyl acetate, 15 mg phytol and 30 mg lupeol. TLC of fraction 2 (Et₂O-petrol, 9:1, detection by UV light and spraying with KMnO₄) gave five bands (2/1-2/5). Repeated TLC of 2/1 (CH₂Cl₂-C₆H₆, 1:1) gave 1 mg 6 (*R*_f 0.35). TLC of 2/2 (CH₂Cl₂-C₆H₆-Et₂O, 9:9:2, several developments) gave 0.6 mg 10 (*R*_f 0.38), 0.5 mg 9 (*R*_f 0.36) and 0.5 mg 6 (*R*_f 0.25). TLC of 2/3 (same solvent as for 2/2) gave 2.8 mg 8 (*R*_f 0.40) and 2 mg 4 (*R*_f 0.20). TLC of 2/4 (same solvent as for 2/2, several developments) afforded 1 mg 12 (*R*_f 0.30), 0.5 mg 11 (*R*_f 0.29) and 3.5 mg 7 (*R*_f 0.15). TLC of 2/5 (CH₂Cl₂-C₆H₆-Et₂O, 2:2:1) gave 1 mg 1 (*R*_f 0.25) and 1.6 mg 4 (*R*_f 0.20). TLC of fraction 3 (Et₂O) gave 2 mg desacyl grazielic acid tiglate (*R*_f 0.50), 3 mg 2 (*R*_f 0.15) and 7 mg desacetyl ovatifolin (*R*_f 0.10). CC (silica gel) of the extract from the roots (50 g) gave three fractions. TLC of the petrol

fraction gave 5 mg 13 and 1 mg 14. TLC of the fraction with Et₂O-petrol (1:3) gave 5 mg stigmasterol, 2 mg sitosterol, and a mixture which by repeated TLC (Et₂O-petrol, 1:10) gave 5 mg 1-hydroxy- α -cucumene (*R*_f 0.3), 2 mg rudbeckianone (*R*_f 0.28), 1 mg 15 (*R*_f 0.24) and 1 mg 16 (*R*_f 0.22), while TLC of the polar fraction (Et₂O-petrol, 9:1) afforded 3 mg ovatifolin. Known compounds were identified by comparing their 400 MHz ¹H NMR spectra with those of authentic materials. The purity of all compounds was tested by TLC in different solvent mixtures and by their ¹H NMR spectra.

9 β -Hydroxyovatifolin-8-O-[2-methylbutyrate] (1). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 3600 (OH), 1785 (γ -lactone), 1740 (OAc); MS *m/z* (rel. int.): 346 [M - HOAc]⁺ (1), 328 [346 - H₂O]⁺ (0.5), 244.109 [346 - RCO₂H]⁺ (10) (calc. for C₁₅H₁₆O₃: 244.109), 226 [244 - H₂O]⁺ (12), 211 [226 - Me]⁺ (3), 198 [226 - CO]⁺ (4), 85 [C₄H₉CO]⁺ (38), 57 [85 - CO]⁺ (100); $[\alpha]_D = -35$ (CHCl₃; *c* = 0.1).

Desacetyl-11 β ,13-dihydroovatifolin (2). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (OH), 1760 (γ -lactone); MS *m/z* (rel. int.): 266.152 [M]⁺ (1) (calc. for C₁₅H₂₂O₄: 266.152), 248 [M - H₂O]⁺ (4), 230 [248 - H₂O]⁺ (2), 220 [248 - CO]⁺ (6), 205 [220 - Me]⁺ (6), 59 (100); $[\alpha]_D = -18$ (CHCl₃; *c* = 0.2).

Desacetyl-11 β ,13-dihydroovatifolin-8-O-tiglate (3). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 3600 (OH), 1785 (γ -lactone), 1720, 1650 (C=CCO₂R); MS *m/z* (rel. int.): 330.183 [M - H₂O]⁺ (0.5) (calc. for C₂₀H₂₆O₄: 330.183), 248 [M - RCO₂H]⁺ (6), 230 [248 - H₂O]⁺ (12), 217 [248 - CH₂OH]⁺ (5), 202 [217 - Me]⁺ (5), 83 [C₄H₉CO]⁺ (100), 55 [83 - CO]⁺ (65).

Desacetyl-11 β ,13-dihydroovatifolin-8-one (4). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (OH), 1770 (γ -lactone), 1700 (C=O); MS *m/z* (rel. int.): 264.136 [M]⁺ (7) (calc. for C₁₅H₂₀O₄: 264.133), 246 [M - H₂O]⁺ (20), 220 [M - CO₂]⁺ (7), 219 [M - CO₂H]⁺ (30), 205 [220 - Me]⁺ (10), 190 [205 - Me]⁺ (7), 69 (100); $[\alpha]_D = -466$ (CHCl₃; *c* = 0.06).

8 β -Hydroxy-9 β -[2-methylbutyryloxy]-14-oxo-acanthospermolide (6). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 3600 (OH), 1780 (γ -lactone), 1740 (CO₂R), 1690 (C=CCHO); MS *m/z* (rel. int.): 260.102 [M - RCO₂H]⁺ (4) (calc. for C₁₅H₁₆O₄: 260.102), 242 [260 - H₂O]⁺ (4), 213 [242 - CHO]⁺ (4), 185 [213 - CO]⁺ (2), 85 [C₄H₉CO]⁺ (34), 57 [85 - CO]⁺ (100); $[\alpha]_D = +26$ (CHCl₃; *c* = 0.07).

8 β -Hydroxy-14-oxo-11 β ,13-dihydroacanthospermolide (7). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (OH), 1760 (γ -lactone), 2750, 1680 (C=CCHO); MS *m/z* (rel. int.): 264.131 [M]⁺ (10) (calc. for C₁₅H₂₀O₄: 264.131), 246 [M - H₂O]⁺ (10), 218 [246 - CO]⁺ (9), 217 [218 - CHO]⁺ (6), 203 [218 - Me]⁺ (5), 84 (100); $[\alpha]_D = -140$ (CHCl₃; *c* = 0.33).

8 β -Acetoxy-14-oxo-11 β ,13-dihydroacanthospermolide (8). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1785 (γ -lactone), 1750 (OAc), 2750, 1695 (C=CCHO); MS *m/z* (rel. int.): 246.126 [M - HOAc]⁺ (30) (calc. for C₁₅H₁₈O₃: 246.126), 218 [246 - CO]⁺ (6), 217 [246 - CHO]⁺ (8), 190 [218 - CO]⁺ (12), 57 (100); $[\alpha]_D = -92$ (CHCl₃; *c* = 0.27).

8 β -Tigloyloxy-14-oxo-11 β ,13-dihydroacanthospermolide (9). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 1785 (γ -lactone), 2750, 1690 (C=CCHO); MS *m/z* (rel. int.): 246.125 [M - RCO₂H]⁺ (38) (calc. for C₁₅H₁₈O₃: 246.125), 218 [246 - CO]⁺ (4), 217 [246 - CHO]⁺ (5), 203 [218 - Me]⁺ (2), 189 [217 - CO]⁺ (5), 83 [C₄H₉CO]⁺ (100), 55 [83 - CO]⁺ (60).

8 β -[2-Methylbutyryloxy]-14-oxo-11 β ,13-dihydroacanthospermolide (10). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 1785 (γ -lactone), 1740 (CO₂R), 2750, 1690 (C=CCHO); MS *m/z* (rel. int.): 348 [M]⁺ (0.5), 246.126 [M - RCO₂H]⁺ (38) (calc. for C₁₅H₁₈O₃: 246.126), 218 [246 - CO]⁺ (6), 217 [246 - CHO]⁺ (8), 189 [217 - CO]⁺ (5), 85 [C₄H₉CO]⁺ (30), 57 [85 - CO]⁺ (100); $[\alpha]_D = -121$ (CHCl₃; *c* = 0.06).

8,14-Dioxo-11 β ,13-dihydroacanthospermolide (11). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 1785 (γ -lactone), 1710 (C=O), 1690 (C=CCHO); MS m/z (rel. int.): 262.119 [M^+] (5) (calc. for $\text{C}_{15}\text{H}_{18}\text{O}_4$: 262.119), 234 [$\text{M} - \text{CO}$] $^+$ (1), 205 [$234 - \text{CHO}$] $^+$ (1), 178 [$\text{M} - \text{C}_5\text{H}_8\text{O}$] $^+$ (12), 69 (100).

8,14-Dioxo-7,11-dihydro-11,13-dihydroacanthospermolide (12). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 1775 (γ -lactone), 1710 (C=O), 1695 (C=CCHO); MS m/z (rel. int.): 260.104 [M^+] (14) (calc. for $\text{C}_{15}\text{H}_{16}\text{O}_4$: 260.104), 232 [$\text{M} - \text{CO}$] $^+$ (7), 231 [$\text{M} - \text{CHO}$] $^+$ (8), 203 [$231 - \text{CO}$] $^+$ (9), 69 (100).

4 α -Cinnamoyloxy-2,3-dehydrocarotol (15). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 3600 (OH), 1710, 1640 (C=CCO₂R); MS m/z (rel. int.): 366.219 [M^+] (1) (calc. for $\text{C}_{24}\text{H}_{30}\text{O}_3$: 366.219), 218 [$\text{M} - \text{RCO}_2\text{H}$] $^+$ (10), 200 [$218 - \text{H}_2\text{O}$] $^+$ (9), 185 [$200 - \text{Me}$] $^+$ (4), 175 [$218 - \text{C}_3\text{H}_7$] $^+$ (12), 131 [$\text{PhCH}=\text{CHCO}$] $^+$ (100), 103 [$131 - \text{CO}$] $^+$ (26), 77 [$103 - \text{C}_2\text{H}_2$] $^+$ (18); $[\alpha]_D = -198$ (CHCl_3 ; $c = 0.05$).

4 α -Cinnamoyloxycarotol (16). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 3610 (OH), 1710, 1640 (C=CCO₂R); MS m/z (rel. int.): 368.235 [M^+] (3) (calc. for $\text{C}_{24}\text{H}_{32}\text{O}_3$: 368.235), 220 [$\text{M} - \text{RCO}_2\text{H}$] $^+$ (8), 202 [$220 - \text{H}_2\text{O}$] $^+$ (7), 187 [$202 - \text{Me}$] $^+$ (5), 148 [$\text{PhCH}=\text{CHCO}_2\text{H}$] $^+$ (100); $[\alpha]_D = -77$ (CHCl_3 ; $c = 0.07$).

Acknowledgement—A. K. S. thanks C.S.I.R., New Delhi, for a Junior Research Fellowship.

REFERENCES

1. Stuessy, T. F. (1977) in *The Biology and Chemistry of the Compositae* (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds) p. 628. Academic Press, London.
2. Robinson, H. (1981) *Smithsonian Contrib. Botany* **51**, 1.
3. Bohlmann, F., Ziesche, J., King, R. M. and Robinson, H. (1981) *Phytochemistry* **20**, 263.
4. Hoeneisen, M., Silva, M. and Bohlmann, F. (1980) *Phytochemistry* **19**, 2765.
5. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1983) *Liebigs Ann. Chem.* 2045.
6. Gnecco, S., Poyer, J. P., Silva, M., Sammes, P. G. and Tyler, T. W. (1973) *Phytochemistry* **12**, 2469.
7. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) in *Naturally Occurring Acetylenes*. Academic Press, London.
8. Bohlmann, F., Jakupovic, J. and Zdero, C. (1978) *Phytochemistry* **17**, 2034.
9. Bates, R. B., Green, C. D. and Sneath, T. C. (1969) *Tetrahedron Letters* 3461.
10. Bohlmann, F. and Zdero, C. (1979) *Phytochemistry* **18**, 1892.
11. Herz, W. and Kalyanaraman, P. S. (1975) *Phytochemistry* **14**, 1664.
12. Bohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J. (1984) *Planta Med.* **37**, 37.
13. Bohlmann, F., Ziesche, J., King, R. M. and Robinson, H. (1980) *Phytochemistry* **19**, 973.
14. Baruah, R. N., Sharma, R. P., Thyagarajan, G., Herz, W. and Govindan, S. V. (1980) *Phytochemistry* **19**, 323.
15. Bohlmann, F., Jakupovic, J., Schuster, A., King, R. M. and Robinson, H. (1982) *Phytochemistry* **21**, 2317.
16. Malcolm, A. J., Carpenter, J. F., Fronczeck, F. R. and Fischer, N. H. (1983) *Phytochemistry* **22**, 2759.
17. Quijano, L., Olivier, E. J. and Fischer, N. H. (1980) *Phytochemistry* **19**, 1485.
18. Bohlmann, F., Ahmed, M., Robinson, H. and King, R. M. (1982) *Phytochemistry* **21**, 1675.
19. Bohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1989.
20. Bohlmann, F., Singh, P. and Jakupovic, J. (1982) *Phytochemistry* **21**, 2122.